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Abstract—We present the unequal loss protection (ULP)
framework in which unequal amounts of forward error correction
are applied to progressive data to provide graceful degradation
of image quality as packet losses increase. We develop a simple
algorithm that can find a good assignment within the ULP
framework. We use the Set Partitioning in Hierarchical Trees
coder in this work, but our algorithm can protect any progressive
compression scheme. In addition, we promote the use of a PMF
of expected channel conditions so that our system can work with
almost any model or estimate of packet losses. We find that when
optimizing for an exponential packet loss model with a mean loss
rate of 20% and using a total rate of 0.2 bits per pixel on the
Lenna image, good image quality can be obtained even when 40%
of transmitted packets are lost.

Index Terms—Joint source/channel coding, lossy image trans-
mission, lossy packet networks, packet erasure channel, packet
loss, priority encoding transmission, Reed–Solomon coding,
unequal loss protection.

I. INTRODUCTION

T HE INTERNET is a widely deployed network of com-
puters that allows the exchange of data packets. In

traversing the network, a packet is sent from computer to
computer until it arrives at its destination. However, when
the number of packets sent exceeds transmission capacity,
packets are discarded at random, causing loss of data and most
likely decoding failure if the lost data are not retransmitted.
Each packet can be assigned a unique sequence number, so
it is known which packets are received and which are lost. If
the underlying transport protocol does not assign a sequence
number, one or two bytes of the payload can be used to provide
one. When each packet has a unique sequence number, the
receiver can sort the packets according to their transmission
order and any gaps in the sequence are known to be lost packets
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(erasures). The receiver can then take whatever action it deems
best.

In networks in which packets are discarded at random, there
is no way to specify the importance of a particular packet. Usu-
ally, however, the data that we transmit vary in importance. If
we transmit a portrait of a face, for example, data that let us
recognize the person are more important than data that show
the texture of a few strands of hair. If the network is unable to
transmit all of the data, then we would like it to discard the part
describing the hair and retain the part that allows recognition of
the face. Such a network strategy needs to quantify the impor-
tance of different chunks of data and, as channel conditions de-
grade, discard the least important data while retaining the most
important data.

In this paper, we describe the unequal loss protection (ULP)
framework that assigns unequal amounts of forward error cor-
rection (FEC) to images that are compressed with an unmodified
progressive algorithm and are transmitted over lossy packet net-
works without using feedback. After presenting the ULP frame-
work, we give a simple algorithm that can find a good FEC as-
signment within that framework. Our scheme is modular in that
we can use any progressive compression algorithm and have
graceful degradation of image quality with increasing packet
loss rate. We focus on those packet erasure channels without
feedback whose variable loss rates can be expressed as a proba-
bility mass function (PMF). Notable examples are asynchronous
transfer mode (ATM) networks, wireless networks, and UDP-
based transport on the Internet.

II. BACKGROUND

In this section, we report previous work on protecting data
from bit errors and packet losses and detail the elements that
will be used in the next section to construct our ULP frame-
work. We begin with an overview of set partitioning in hierar-
chical trees (SPIHT) [1] and explain ways in which it has been
protected for transmission over nonideal channels. We then re-
view the priority encoding transmission [2] scheme for using
Reed–Solomon codes to protect video.

A. Set Partitioning in Hierarchical Trees

An example of a progressive image compression algorithm
is SPIHT [1], an extension of Shapiro’s Embedded Zerotree
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Wavelet method [3]. These two new algorithms are a signifi-
cant breakthrough in lossy image compression in that they give
substantially higher compression ratios than prior techniques
including JPEG [4], vector quantization [5], and the discrete
wavelet transform [6] combined with quantization. In addition,
the algorithms allow for progressive transmission [7] (meaning
coarse approximations of an image can be reconstructed quickly
from beginning parts of the bit stream), require no training, and
are of low computational complexity.

The SPIHT algorithm uses the 9/7-tap biorthogonal filter in
the discrete wavelet transform [6]. To take advantage of the self-
similarity among wavelet coefficient magnitudes in different
scales, the coefficients are grouped into tree structures calledze-
rotrees.The organization of wavelet coefficients into a zerotree
is based on relating each coefficient at a given scale (parent) to
a set of four coefficients with the same orientation at the next
finer scale (children). Zerotrees allow the prediction of insignif-
icance of the coefficients across scales (that is, if the parent is
insignificant with respect to a given threshold, its children are
also likely to be insignificant) and represent this efficiently by
coding the entire tree at once.

SPIHT groups the wavelet coefficient trees into sets and
orders coefficients by the highest bit plane of the magnitude.
The ordering information is encoded with a set partitioning
algorithm. This algorithm is fully reproduced at the decoder.
The SPIHT algorithm transmits the wavelet coefficients in bit
plane order with most significant bit plane first. For each bit
plane there are two passes. In the first pass, called thedom-
inant pass,coefficients which are significant with respect to
the current threshold are found and coded using the set parti-
tioning method. In the second pass, thesubordinate pass,the
precision of all previously significant coefficients is increased
by sending the next bit from the binary representation of their
values. Such refinement allows for progressive-approximation
quantization and produces a fully embedded code, i.e., the
transmission of the encoded bit stream can be stopped at
any point and a lower rate image can still be decompressed
and reconstructed. Additionally, a target bit rate or target
distortion can be met exactly.

B. Joint Source/Channel Coding Using SPIHT

Joint source/channel coding is an area that has attracted
a significant amount of research effort. Despite the fact that
Shannon’s separation theorem [8] states that for a noisy
channel, the source and channel coders can be independently
designed and cascaded with the same results as given by a
joint source/channel coder, complexity considerations have led
numerous researchers to develop joint source/channel coding
techniques. To date, most of this effort has been for fixed rate
codes because they do not suffer from the synchronization
problems that occur with variable rate codes [9]–[11]. (Notable
exceptions that have considered joint source/channel coding
schemes for variable rate codes include work on reversible
variable length codes that can be decoded in both directions
[12]. However, these codes can still have problems with
synchronization.)

SPIHT yields high compression ratios, but images com-
pressed with SPIHT are vulnerable to data loss. Furthermore,
because SPIHT produces an embedded or progressive bit
stream, meaning that the later bits in the bit stream refine earlier
bits, the earlier bits are needed for the later bits to even be
useful. However, SPIHT’s impressive performance is leading
researchers to consider transmitting images compressed with
SPIHT over lossy channels and networks.

C. Prior Work on Transmitting SPIHT over Noisy Channels

Sherwood and Zeger [13] protected images compressed with
SPIHT against noise from the memoryless binary symmetric
channel with rate-compatible punctured convolutional (RCPC)
codes [14] with good results. They extended this work to images
transmitted over the Gilbert–Elliott channel (a fading channel)
in [15]. In the latter case, they implement a product code of
RCPC and Reed–Solomon codes and find that this outperforms
the work in [13] even for the binary symmetric channel.

Rogers and Cosman were the first to consider the transmis-
sion of images compressed with SPIHT over packet erasure
networks [16]. They used a fixed-length packetization scheme
called packetized zerotree wavelet (PZW) compression to
transmit images compressed with a modified SPIHT over lossy
packet networks. The algorithm does not use any channel
coding. They implemented a scheme to fit as many complete
wavelet trees (i.e., one coefficient from the lowest frequency
wavelet subband along with all its descendants) as possible
into a packet. The algorithm degrades gracefully in the pres-
ence of packet loss because the packets are independent. If a
packet is lost, they attempt to reconstruct the lowest frequency
coefficients from the missing trees of wavelet coefficients by
interpolating from neighboring low frequency coefficients that
have been correctly received by the decoder. To simplify their
algorithm, they used fewer levels of wavelet decomposition
and removed the arithmetic coder from the SPIHT algorithm.
The modification of the SPIHT algorithm caused a decrease of
about 1.1 dB in the PSNR for the Lenna image coded at 0.209
bits per pixel for the case of a channel without losses.

These two schemes were combined into a hybrid scheme in
[17]. The authors consider the case where, in addition to packet
loss, packets can arrive with bit errors in them. They use channel
coding to correct bit errors and PZW to conceal packet losses. If
they cannot correct all of the bit errors in a packet, they consider
the packet to be erased. The hybrid scheme shows resilience to
packet loss, bit errors, and error bursts. It is still based on the
modified SPIHT algorithm used in [16], which does not perform
as well as the original SPIHT algorithm.

In recent work, Chande and Farvardin presented an unequal
error protection algorithm for progressive transmission over bit
error channels [18]. They assume that the bit stream can only be
decoded up to the first uncorrectable error. They suggest max-
imizing the average useful source coding rate as an optimiza-
tion criterion, because a longer prefix of the bit stream yields
higher reconstructed image quality when decoded [18]. They
use RCPC codes for bit errors. They use a dynamic program-
ming approach to find the optimal code policy for each bit rate.
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Their scheme shows gains over equal error protection of up to
0.6 dB.

D. Reed–Solomon Codes

Systematic Reed–Solomon (RS) codes can be used to gen-
erate FEC. RS codes are effective at recovering from erased
symbols when the locations of the erased symbols are known.
When packets either arrive perfectly intact or are completely
discarded, we can consider RS codes that are optimized for era-
sures [19]. These maximum distance separable block codes are
denoted by a pair , where is the block length and is
the number of source symbols. When the code is systematic, the
first of the encoded symbols are the source symbols and the
remaining symbols are redundancy. They have the prop-
erty that an code can exactly recover thesource sym-
bols from any size- subset of the total symbols. From an in-
formation theoretic standpoint, that property makes these codes
optimal when exactly symbols are received. This recovery is
possible by treating the source symbols as the coefficients of a
polynomial in a Galois field of size and evaluating it
at a number of additional points, thus creating redundant data
[19], [20].

E. Forward Error Correction for Packet Erasure Channels

Priority Encoding Transmission (PET) [2] is an algorithm that
assigns FEC, according to priorities specified by the user, to
message fragments (also specified by the user) sent over lossy
packet networks. Each of these fragments is protected against
packet losses by added FEC. It defines priorities as the fraction
of transmitted packets that must be received to decode the mes-
sage; thus a high priority is represented by a low percentage
and the message fragment can be recovered if relatively few
packets are received by the decoder. The receiver can recover
the message fragment by interpolation from any subset of the
transmitted packets, so long as it receives a fraction of packets
at least as large as the priority of the message fragment. This
property is a direct result of employing Reed–Solomon codes.

In the PET algorithm, each message fragment is assigned a
fixed position within each packet. In Fig. 1, the first fragment

and its FEC consist of the first bytes of each packet,
the second fragment and its FEC consist of bytes from
( ) to ( ) of each packet, and and consist of the
remaining bytes of each packet. PET determines the value of
for each fragment and the total number of packets, making
the assumption that the number of fragments is much smaller
than the number of bytes in each packet, and constrained by the
user-specified priorities.

The PET algorithm does not specify how to choose the
priorities to assign to the various message fragments: this
assignment is left to the user. Leicher [21] applied PET to
video compressed with MPEG and transmitted over packet loss
channels. He used a simple three-class system in which
was the intraframe (I) frames and had priority 60%, was the
forward-only predicted (P) frames and had priority 80%, and

was the forward–backward predicted (B) frames and had
priority 95%. Thus, he can recover the I frames from 60% of
the packets, the I and P frames from 80% of the packets, and all
the data from 95% of the packets. This is diagrammed in Fig. 1.

Fig. 1. In Leicher’s application of PET to MPEG [21], he applied 60% priority
toM (I frames), 80% priority toM (P frames), and 95% priority toM (B
frames).

Girod, Stuhlmüller, Link, and Horn applied unequal amounts
of Reed–Solomon coding to protect packetized scalable H.263
video, with improved results at higher loss rates over equal or
no error protection [22].

Daviset al.[23] presented fast lossy Internet image transmis-
sion (FLIIT) which is a joint source/channel coding algorithm.
Like PET, it assigns different levels of FEC to different types of
data, but it considers distortion-rate tradeoffs in its assignments.
They begin with a 5-level discrete wavelet transform, create an
embedded bit stream by quantizing each subband’s coefficients
in bit planes, apply entropy coding, and pack the bit stream from
each subband into 64-byte blocks. To do bit allocation, they de-
termine the reduction in distortion due to each block, similar to
work in [24]. They then compare the greatest decrease in dis-
tortion from those blocks with the addition of a block of FEC
data to the already-allocated blocks. They allocate the block of
data or block of FEC that decreases the expected distortion the
most. They only consider three simple cases of assigning FEC
to a block: no protection, protection that consists of one FEC
block shared among a group of blocks, and replication of the
block. They find that, as expected, it is advantageous to apply
more FEC to the coarse/low-frequency wavelet scales and to the
most significant bit planes of the quantization.

The FLIIT algorithm is one of the first pieces of work to ex-
plicitly consider distortion-rate tradeoffs in making FEC assign-
ments for lossy packet networks. However, it is limited by the
coarse assignment of only three levels of protection, and the re-
liance on the compression algorithm they have selected (for ex-
ample, SPIHT can yield a PSNR that is over 1 dB higher than
their algorithm). In later work [25], the FLIIT algorithm was ex-
tended to use more powerful Reed–Solomon-like codes, but it
still relies on their compression algorithm.

III. T HE UNEQUAL LOSSPROTECTIONFRAMEWORK

While the algorithms in [15]–[17], [23] yield good results
for memoryless and fading channels and for lossy packet net-
works, there are additional ways to transmit compressed images
over lossy networks such that image quality gracefully degrades
with increasing packet loss. Specifically, we will protect images
transmitted over lossy channels with unequal amounts of FEC
in a manner similar to the PET scheme, but we will consider the
effect of each data byte on image quality when assigning pro-
tection.
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Fig. 2. Each of the rows is a stream and each of the columns is a packet. A
stream contains 1 byte from each packet. The numbers 1–32 are data, and the
symbol F is FEC.

In our approach to creating a framework derived from PET to
assign unequal amounts of FEC to progressive data, we remove
PET’s restriction that the number of message fragments be much
less than the number of bytes in each packet. Instead, we use a
number of message fragments equal to the number of available
bytes in each packet and have our algorithm dynamically choose
the length and content of each message fragment. We add FEC
to each message fragment to protect against packet loss such
that the fragment and the FEC form astream.The message is
divided into streams such that each stream has one byte of
each of packets. In Fig. 2, each of the rows is a stream
and each of the columns is a packet. For a given stream
, for , containing both data bytes and FEC

bytes, as long as the number of lost packets is less than or equal to
the number of FEC bytes, the entire stream can be decoded [2].
Fig. 2 shows one possible way to send a message of 32 bytes of
data (numbers 1–32) and ten bytes of FEC (F). Notice that in the
figure, more bytes of FEC are applied to the earlier parts of the
message and fewer are used for the later parts of the message. For
SPIHT’s embedded bit stream, the earlier parts of the message
should have the highest priority because they are most important
to the overall quality of the reproduction.

Fig. 3 shows the case where one packet out of six is lost, and
five are received correctly. In this case, the first six streams can
be recovered since they contain five or fewer data bytes. The
last stream cannot be decoded since it contains six bytes of data
and no FEC. We point out that bytes 27–29 from the seventh
stream are useful since they were received correctly but bytes 31
and 32 are not useful without byte 30. Similarly, if two packets
are lost, bytes 1–11 are guaranteed to be recovered and bytes
12–15 may or may not be recovered. In messages of practical
length, however, those few extra bytes have only a small effect
on image quality. Analogous to progressive transmission [7],
even if severe packet loss occurred, we could recover a lower
fidelity version of the image from the earlier streams that are
decoded correctly. Each additional stream that is successfully
decoded improves the quality of the received message, as long
as all previous streams are correctly decoded.

A. Formalizing the Framework

In this section, we introduce notation to formalize the ULP
framework. Assume we have a message, which is simply

Fig. 3. Demonstration of how much data can be recovered when one of six
packets is lost. Here, stream 1 is unaffected by the loss, streams 2–6 use FEC to
recover from the loss, and in stream 7, only the bytes up to the lost packet are
useful to the decoder.

a sequence of data bytes to be transmitted. For example, this
could be a still image compressed with SPIHT to 0.5 bits per
pixel. If, instead of sending , we send a prefix of and some
FEC, we can still maintain the same overall bit rate. We let
equal the number of data bytes assigned to streamand let

equal the number of FEC bytes assigned to stream.
We define the redundancy assignment, an-dimensional FEC
vector whose entries are the length of FEC assigned to each
stream, as

For a given , we divide into fragments and de-
fine to be the sequence of data bytes in theth stream.
That is, includes the bytes of message from position

to position ; , with
composed of bytes of stream 1. We denote a prefix

of containing the first fragments for redundancy vector
as

We define theincremental PSNRof stream

PSNR PSNR
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Fig. 4. At each iteration of the optimization algorithm,Q bytes of data can be
added or subtracted to any of theL streams.

The quantity is the amount by which the PSNR increases
when the receiver decodes fragment, given that all fragments
prior to have already been decoded. We set to be the dif-
ference in PSNR between the case in which is received
and the case in which no information is received (a simple gray
field).

Because the data are progressive, we require that
; that is, the FEC assigned to the streams

is nonincreasing with. With this requirement, if can be
decoded, then can also be de-
coded. There is no advantage to having more redundancy in
stream than in stream because the loss of more than
packets would render both streams undecodable.

To determine the FEC vector, we use an estimate of the
channel loss profile that a message is likely to encounter. This
estimate is given by a PMF , such that
is the probability that packets are lost. To simplify later cal-
culations, we determine the probability thator fewer packets
are lost, and thus the cumulative distribution function is

. The quantity is the proba-
bility that receiver can decode stream.

We can now calculate the expected PSNR of the received
message as a function ofby summing over the streams

(1)

In designing an algorithm to assign FEC, we seek thethat
maximizes subject to a packet loss estimate. Note that

could be image quality measures other than PSNR such as
the mean squared error, useful source coding rate, or perceptual
criteria, all of which fit within this framework.

B. Channel Estimation

In keeping with our modular design philosophy, we assume
the existence of anestimatorthat outputs a PMF indicating the
likelihood that a particular number of packets is lost, given the
total number of packets to be transmitted. This estimator could
be almost any model of expected packet loss rates: a PMF can
realize uniform, binomial, Zipf, Poisson, exponential, and other
distributions, as well as state-based systems such as Gilbert–El-
liott channels. Furthermore, characterizing networks such as the

Fig. 5. Pseudocode of assignment algorithm.N is the number of packets, and
L is the length of each packet. The variablesbest, last, andtemp are vectors
that store redundancy assignments.Q is the search distance andsearch value
is an iteration index over that distance.

Fig. 6. Effect of packet loss on PSNR for ULP, ELP, Rogers and Cosman’s
packetized zerotree wavelets [16], and unprotected SPIHT. The two loss
protection results are from an exponential packet loss model with a mean loss
rate of 20%.

Internet is an open and active research topic in the networking
community [27], [28], although we note that an estimator for
the Internet is likely to be quite different from an estimator for a
wireless channel. By requiring the estimator to produce a PMF,
we maintain the relevance of the framework to a variety of ap-
plications and allow new developments in network channel es-
timation to be seamlessly incorporated into our system.

IV. A N ALGORITHM FORSOLVING THE ULP PROBLEM

The previous section presented a framework that can be used
to assign FEC to the compressed image data. In this section,
we describe an algorithm to find a good FEC assignment
vector. Finding the globally optimal assignment of FEC data
to each of the streams within the ULP framework appears to
be computationally prohibitive for a useful amount of data.
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(a) (b)

(c) (d)

Fig. 7. Image quality at 0.2 bits per pixel total rate for Unequal Loss Protection of Lenna over a channel that has an exponential loss profile with a meanof 20%.
(a) 30% of packets lost. (b) 40% of packets lost. (c) 50% of packets lost. (d) 60% of packets lost.

We therefore developed a local search hill-climbing algorithm
that makes limited assumptions about the data, but is computa-
tionally tractable. As mentioned in Section III-A, we constrain

. Additionally, we assume that a single byte missing
from the progressive bit stream causes all later bytes to become
useless.

We initialize each stream to contain only data bytes, such that
and . In each iteration, our

algorithm examines a number of possible assignments equal to
, where is the search distance (maximum number of FEC

bytes that can be added or subtracted to a stream in one iteration)
and is the number of streams. We determine after adding
or subtracting 1 to bytes of FEC data to each stream (see
Fig. 4), while satisfying our constraint . We choose
the corresponding to the highest , update the allocation
of FEC data to all affected streams, and repeat the search until
none of the cases examined improves the expected PSNR. This
process is detailed more fully in pseudocode (see Fig. 5). Our
algorithm finds a local maximum that we believe is quite close
to the global maximum and, in some cases, may be identical.
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The search distance is a parameter of the algorithm that is
chosen ahead of time. There is clearly a tradeoff: the larger
is, the more likely the algorithm will find a global optimum, but
the algorithm will require more time to run. When the PMF is
well behaved, such as a simple unimodal function, a small
seems to yield excellent results.

Note that for every byte of FEC data that we add to a stream,
one byte of data needs to be removed. When changing the FEC
assignment, we start at the first stream affected by the new allo-
cation, move its last data byte to the next stream, move the last
data byte of this stream to the following stream, and so on. This
causes a cascade of data bytes to move down the streams until
the last data byte from streamis discarded. This part of the
algorithm uses our assumption that the compressed sequence
is progressive, because the data byte that we discard is among
the least important in the embedded bit stream. The algorithm
results in a set of different strength Reed–Solomon codes. The
size of each code would need to be sent to the decoder as side
information and how this would be implemented depends on the
system being used.

V. RESULTS

The algorithm developed in the previous section is applied
to two test images. The first test image is the standard “Lenna”
image and the second is a magnetic resonance image of a sagittal
brain slice.

A. Lenna

For these experiments, we used the standard 512512 gray-
scale Lenna image compressed with SPIHT. We chose a total bit
rate of 0.2 bits per pixel for the combination of data and FEC
bytes. Because ATM packets have a payload length of 48 bytes
and 1 byte is required for a sequence number, we place 47 bytes
of data in each packet and send 137 packets, giving a total pay-
load size of 6576 bytes, of which 6439 are data. Including the
sequence number, the bit rate is 0.201 bits per pixel. Excluding
it, the bit rate is 0.197 bits per pixel. Convergence of the al-
gorithm is typically reached in about 27 iterations and requires
0.5 s on an Intel Pentium II 300 MHz workstation.

For this example, we use a channel loss model that is an expo-
nential PMF with a mean loss rate of 20%. We justify the expo-
nential shape by noting that packet loss rates are usually small,
but sometimes spike to larger values. Although a 20% mean loss
rate may seem high for current ATM networks, loss rates have
been increasing over time [29]–[31], and such high loss rates
commonly occur with wireless networks and on the Internet at
peak times. We use this PMF to demonstrate that ULP is robust
even in extreme situations.

We maximize the expected PSNR for two cases: ULP
and equal loss protection (ELP), in which the algorithm is
constrained to assign FEC equally among all of the streams.
For ULP, our assignment algorithm resulted in an allocation
with an expected PSNR of 29.42 dB. For ELP, the result was
an allocation with an expected PSNR of 28.94 dB, or 0.48 dB
lower than the ULP assignment result.

As shown in Fig. 6, under good channel conditions (packet
loss rates of up to 32%, which occur 80% of the time) ULP

Fig. 8. Data fraction for each stream (Lenna image). Note that the FEC fraction
is (1—Data Fraction). Stream 1 is the first stream (most important data), and
stream 47 is the last stream (least important data).

Fig. 9. The ULP system is progressive in the number of packets received
(Lenna image).

yields a PSNR that is 0.66 dB higher than ELP. This is because
more bytes are used for data and fewer for FEC. ELP surpasses
ULP when loss rates are 33% to 51%, but those occur with
only 12.5% probability. In addition, ULP degrades gracefully
whereas ELP has a sharp transition at loss rates near 51%. ULP
outperforms ELP a total of 85.5% of the time for this example.
As expected, both of these cases substantially outperform not
using any protection on the data, except when the loss rate is
very low.

At those low loss rates, e.g., below 1%–2%, unprotected
SPIHT will often survive with a significant prefix of the
transmitted data remaining intact and the more-robust PZW
coder [16] will perform slightly better. On the other hand,
the performance of unprotected SPIHT and PZW degrades
rapidly as losses increase, while the addition of FEC allows
protected data to survive at larger loss rates. We also note
that the protected data are affected only by the number of lost
packets, but the reconstruction quality of unprotected SPIHT,
and to a lesser extent PZW, depends upon which packets are
lost. (See [26] for more discussion of this subject.)

We display results of our ULP algorithm in Fig. 7. It shows
the graceful degradation of the image transmitted over a lossy



826 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 6, JUNE 2000

Fig. 10. The 256� 256 magnetic resonance image. (a) The original. (b)
Compressed at 1.0 bit per pixel with SPIHT.

packet network with loss rates of 30%, 40%, 50%, and 60%.
Notice that the image quality remains high at a packet loss rate
of 40% and the image is still recognizable at a loss rate of 50%
(and even at 60% by researchers in the image compression com-
munity).

We show how ULP assigns data and FEC to the data streams
in Fig. 8. Stream 1 is the first stream (most important data from
the SPIHT algorithm) and it has an assignment of 24% data and
76% FEC. Stream 47 is the last stream (least important data)
with 70% data and only 30% FEC. The 47 streams represent 23
different RS code strengths. As expected, the amount of FEC

Fig. 11. Comparison of magnetic resonance image PSNR versus fraction of
packets lost for ULP, ELP, and unprotected SPIHT. The channel loss model is
an exponential with a mean of 10%.

decreases with increasing stream number, as required by our
algorithm.

Finally, we point out that our system does provide progres-
sive transmission, albeit with a delay. Once a number of packets
equal to the number of data bytes in stream 1 is received, we
can begin to decode the image. In Fig. 9, we see that when 33
packets of the ULP-protected Lenna image have arrived, stream
1 can be decoded. Then as additional packets are received, the
additional decoded bytes are used to update the image. Further-
more, the image quality does not depend on which packets are
received or on their order of arrival [26].

B. Magnetic Resonance Image

We next apply the ULP algorithm to a 256 256 magnetic
resonance image of a brain compressed with SPIHT. The orig-
inal image is shown in Fig. 10(a) and a compressed version at 1.0
bits per pixel is shown in Fig. 10(b). In this example, the image
was transmitted in 174 47-byte payloads over a channel with an
exponential mean loss rate of 10%. We chose this lower mean
loss rate to demonstrate that the ULP assignment algorithm is
also effective for less extreme network conditions. The total bit
rate was 1.0 bits per pixel for the combination of data and FEC
bytes. Convergence of the algorithm was typically reached in
about 46 iterations and required 0.08 s of CPU time on an Intel
Pentium II 300 MHz workstation.

In Fig. 11, we show the results of using our algorithm for
both ULP and ELP. Under better channel conditions (packet loss
rates of up to 24%), ULP yields a PSNR of 36.02 dB, which
is 1.08 dB higher than the 34.94 dB result of ELP. As before,
ULP degrades gracefully, whereas ELP would give very poor
image quality if the experienced loss rate were above 33%. ULP
outperforms ELP 94% of the time in this example. Fig. 12 shows
the graceful degradation of the image protected with ULP and
transmitted over a lossy packet network with loss rates of 10%,
20%, 30%, and 40%. Notice that the image quality remains high
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(a) (b)

(c) (d)

Fig. 12. Image quality at 1.0 bit per pixel total rate for Unequal Loss Protection of a magnetic resonance image over a channel that has an exponential loss profile
with a mean of 10%. (a) 10% of packets lost. (b) 20% of packets lost. (c) 30% of packets lost. (d) 40% of packets lost.

at a 30% loss rate and the image is still clearly recognizable as
a sagittal brain slice at the 40% loss rate.

VI. CONCLUSION

We have presented the Unequal Loss Protection framework
and developed a simple algorithm that assigns FEC to provide
graceful degradation of image quality in the presence of packet
loss. Our framework is modular and can input any progressive

compression scheme, any network condition estimator that pro-
duces a PMF, and other ULP assignment algorithms besides the
hill-climbing algorithm presented here. As better progressive
compression algorithms than SPIHT are discovered, they can
be easily incorporated into the ULP framework. We are cur-
rently developing an assignment algorithm that is optimal for
a convex hull approximation of the source data. We also expect
to extend this work to the transmission of video sequences. Fi-
nally, we have used our ULP system to solve the generalized
multiple description problem [26]. Demo programs and data
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files are available from http://isdl.ee.washington.edu/compres-
sion/amohr/ulp/.
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