
Bit Allocation in Sub-linear Time and the
Multiple-Choice Knapsack Problem

Alexander E. Mohr
�

Sieg 114, Box 352350
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195–2350

amohr@cs.washington.edu

Abstract

We show that the problem of optimal bit allocation among a set of independent discrete
quantizers given a budget constraint is equivalent to the multiple choice knapsack problem
(MCKP). This result has three implications: first, it provides a trivial proof that the problem
of optimal bit allocation is NP-hard and that its related decision problem is NP-complete;
second, it unifies research into solving these problems that has to-date been done indepen-
dently in the data compression community and the operations research community; third,
many practical algorithms for approximating the optimal solution to MCKP can be used for
bit allocation. We implement the GBFOS, Partition-Search, and Dudzinski-Walukiewicz
algorithms and compare their running times for a variety of problem sizes.

1 Introduction

The problem of optimal bit allocation among a set of independent discrete quantizers given
a budget constraint has been widely studied by the data compression community [1, 2, 3, 4,
5]. Likewise, the multiple-choice knapsack problem (MCKP) has been extensively studied
in the operations research community [6, 7, 8, 9, 10]. In this paper, we show that these
two problems are equivalent, i.e., an algorithm that solves one of these problems can be
convered into an algorithm that solves the other within the same time and memory bounds.

This equivalence unifies twenty years of research into these problems and has a number
of implications. First, it provides a trivial proof that finding an optimal solution to the bit
allocation problem is NP-hard. Second, efficient approximation algorithms that have been
�
Supported in part by National Science Foundation Grant CCR-0104800. The author may also be con-

tacted via dcc2002@alexmohr.com. This paper appeared at the 2002 Data Compression Conference.

developed for MCKP can now be applied to bit allocation. Some of these algorithms run in
linear time. Others run in sub-linear time when the convex hulls of the distortion-rate curves
are known, as commonly occurs in bit allocation. We introduce the two problems and argue
their equivalence; provide overviews of both linear time and sub-linear time algorithms;
and present experimental results comparing implementations of these two algorithms to
the GBFOS [3] algorithm.

2 The Two Problems

In this section, we first explain and then formulate the bit allocation problem and the
multiple-choice knapsack problem.

2.1 The Bit Allocation Problem

The bit allocation problem can be formulated as follows. We are given a set of � input
signals �����	�	�	�
���� such that each input signal �	� has a set of ��� possible reproductions.
Quantizer ���� produces the � th reproduction of source ��� with distortion ����� and rate ���� . If
we use quantizer �
��� on �	� , we set indicator variable ��������� and otherwise set ������� � .
Given a rate budget ! , our goal is to minimize the overall distortion " . Formalizing these
relationships yields the following four equations:

minimize "#�
$%
�'&(�

)	*%
�+&(�
�,�����-��� (1)

subject to

$%
�'&(�

)	*%
�+&(�
������-���/.0!1� (2)

)	*%
�2&(�
�-���3�4�5� 67�8���	�	�	�
�9�:� (3)

�-���/;=<>�?�	��@�� A(6+�B�5� (4)

The values of the ����� ’s encode a solution to the bit allocation problem: we select the repro-
duction produced by quantizer �	��� if and only if �-���C�D� .

2.2 The Multiple-Choice Knapsack Problem

The multiple-choice knapsack problem has a similar formulation. We are given a set of �
“tables” EF�G�	�	�	�
�9E $ such that table EH� contains �(� “items.” The � th item on table E(� has
profit IJ��� and weight KL��� . Given a knapsack with weight capacity M , our goal is to fill the
knapsack by selecting one and only one item from each table such that our overall profitN

is maximized without exceeding the knapsack’s capacity, as illustrated in Figure 1. The
“multiple-choice” term in the problem designation refers to the requirement of selecting
exactly one item from each table, much as students are required to fill in exactly one oval
for each problem on their multiple-choice tests. If we use indicator variable ����� to indicate

?

Figure 1: The multiple-choice knapsack problem. Each cylinder has a profit and weight
associated with it.

whether the � th item from table E(� was selected, we can formalize the problem with these
four equations:

maximize
N �

$%
�O&(�

)	*%
�+&(�
IJ���9�-��� (5)

subject to

$%
�O&(�

)	*%
�+&(�
KL���9�-���/.0MP� (6)

)	*%
�+&(�
�-���3�8�5� 67�D�5��	�	�G�9�:� (7)

�-���/;Q<>�?�	��@�� A(6+�B�5� (8)

Clearly, if we set I-���R�TSU�,��� , ����V�WKL��� , N �TSU" , and MX�Y! , Equations 1–4 will
be identical to Equations 5–8. The same set of indicator variables <Z�(����[6\� �5��	�	�G�9� and
�]���5�	�	�	�G�9�H�^@ will be an optimal solution to both problems and an algorithm that finds
such a set for one problem can be used to find such a set for the other. Therein lies a trivial
proof of NP-hardness for bit allocation: because these two problems are equivalent and
MCKP is well-known to be NP-hard (e.g., [9]), optimal bit allocation is also NP-hard.

3 Approximation Techniques

It is possible to exactly solve the above problems using branch-and-bound algorithms, but
because the worst-case running time of these algorithms is exponential in both the number
of tables and the number of items on each table, branch-and-bound algorithms are often too
slow to be useful. An alternative approach is to relax some number of constraints, solve the
relaxed problem exactly, and use the resulting solution to the relaxed problem to construct
a heuristic solution for the original problem.

3.1 Lagrangian Relaxation

An approach that has become popular for the bit allocation problem is Lagrangian relax-
ation, in which Equations 1 and 2 are combined into the following:

minimize "_�
$%
�O&(�

)	*%
�2&(�
` �,���badc-����
ef�-����� (9)

3.2 Linear Relaxation

For the MCKP, a more common approach is linear programming relaxation in which the
integrality constraint on ����� is removed by replacing Equation 8 with:

�g.h�-���/.i�5� A(62�B�5� (10)

This relaxed problem is often called the linear MCKP or LMCKP and it is relatively easy to
solve. An interesting property of LMCKP is that the solution that maximizes

N
represents

an upper bound on the MCKP from which it derives. This upper bound is also at least as
tight as an upper bound resulting from Lagrangian relaxation and is potentially better.

4 Approximation Algorithms

The known approximation algorithms for MCKP can be broadly divided into three classes:
those that work on arbirary inputs, those that require the items in each set to be sorted by
either weight or profit, and those that require the weights and profits of each set to form a
convex hull.

4.1 Arbitrary Inputs

When the convex hulls are not known, the problem can be solved by using algorithms due
to Dyer [7] and Zemel [8] that are linear in the total number of items, or j `9k $�O&(� �(�le . If
each table contains the same number of items, � , then these algorithms run in time j ` ���me .
It is also possible to use a Lagrangian relaxation which has time j ` ���ne for each value of
c that is evaluated. Theoretically, Shoham and Gersho [2] can be extended to run in strictly
linear expected time, but that approach has not yet been implemented to our knowledge.

Alternatively, one could sort the items in each set by profit or weight, or find the convex
hull in j ` � log �me time, where ��o� .4�H� is the number of points on the convex hull of table
E�� [11]. Once the convex hull is known, a more specialized algorithm can be applied.

4.2 Sorted Inputs

A second option is available when the items on each table are sorted by either their profit or
weight: Graham’s scan [12] or the incremental method [13] will find the convex hull for ta-
ble E�� in j ` �(�le time, or total time that is linear in the total number of reproductions. Again,
once the convex hull is known, any of the algorithms for that more restricted condition can
be applied.

4.3 Convex Hulls Known

In this paper, we focus on the situation when the convex hulls are known and present
three algorithms: GBFOS [3], an algorithm we call Partition-Search, and the algorithm of
Dudzinski and Walukiewicz [6]. In the following analyses of running times, we assume
that each table contains the same number of items � ; i.e., �m�n�p�b�	A(6 .

4.3.1 GBFOS

The GBFOS algorithm [3] works by repeatedly merging pairs of sorted sets. In j ` ��� log �qe
time, it finds the complete convex hull of all possible rates and distortions. Once the com-
plete convex hull is known, a simple search locates a point on that hull that has rate as large
as possible, yet satisfies the bit budget.

4.3.2 Partition-Search

Partition-Search can be used to find a solution in j ` ���ne time. Partition-Search first finds
the median over all slopes between successive points on each convex hull. Any linear
time median algorithm [13] will accomplish this task in j ` ���me time. By partitioning each
convex hull around an item such that the slope from its predecessor on the hull is greater
than the median and the slope from it to its successor on the hull is less than the median,
we can test whether setting �����r�X� for these partitioning items will exceed our capacity
M . If it does, then we only search among slopes greater than the median in the future and
can discard all points with smaller slopes from further consideration. Likewise, if we have
excess capacity remaining, then we need search only among slopes less than the median
and can discard all points with higher slopes from further consideration. By repeating this
process with the remaining points, we remove at least half of the points in each iteration.
Though there will be j ` log ���ne iterations, each successive iteration is half as expensive
and the overall time remains j ` ���ne .

4.3.3 Dudzinski-Walukiewicz

The algorithm of Dudzinski and Walukiewicz [6] runs in j ` � log s+�ne time, sub-linear in
the number of reproductions. They achieve this sub-linear time by exploiting the selection
algorithm of Frederickson and Johnson [14], which can find the median of an �rt1� matrix
with sorted columns in j ` � log �ne time. With j ` log �me iterations of the j ` � log �me algo-
rithm, the resulting complexity is j ` � log s �ne . These algorithms and their accompanying
proofs of correctness are reasonably complex, so we refer the interested reader to the cited
articles and move now to explore their real-world performance.

5 Evaluation of the Algorithms

We implemented GBFOS [3], Partition-Search, and Dudzinski-Walukiewicz [6] to deter-
mine how useful these algorithms are in practice and also to compare their performance

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

7

Reproductions per source signal

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
GBFOS
Partition−Search
Dudzinski−Walukiewicz

(a)

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Reproductions per source signal

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

GBFOS
Partition−Search
Dudzinski−Walukiewicz

(b)

Figure 2: Execution times for GBFOS, Partition-Search and Dudzinski-Walukiewicz for
�u�v�5���5�5� sources against the number of available reproductions per source. (a) Normal
scale axes. (b) Log-Log scale axes.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Reproductions per source signal

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
GBFOS
Partition−Search
Dudzinski−Walukiewicz

Figure 3: Execution times for GBFOS, Partition-Search, and Dudzinski-Walukiewicz for
�Y�8�Z� reproductions against the number of reproductions per source.

for inputs of different sizes. Note that these implementations are relatively straightforward
prototypes of the underlying algorithms: extensive optimization was not attempted.

Each reported trial represents the average execution time required to solve ten randomly
generated instances of the given problem size. Because of timer granularity issues on the
hardware (Intel Pentium III, 933 MHz running Linux 2.4.7) and a randomized partition
algorithm that was the basis for linear time selection subroutines, reported execution times
varied by a few percent from execution to execution. The total number of quantizers was
limited to about 10 million to ensure that all experiments ran in main memory. The solu-
tions found by all three algorithms were identical, so here we report only execution time.

In Figures 2a and 2b, we graph execution time versus increasing numbers of reproduc-
tions for each source (�) but fix the number of sources at �w�Y�5���5�5� . GBFOS is always
at least six times slower than Partition-Search. With few reproductions for each source
signal, the j ` � log s �ne Dudzinski-Walukiewicz algorithm is eight times slower than the
j ` ���me Partition-Search algorithm; however, when the number of reproductions exceeds
200, the asymptotic advantage of Dudzinski-Walukiewicz overcomes its larger constant
factors hidden by the big- j notation. When the number of reproductions rises to xy��z��5� ,
Dudzinski-Walukiewicz is an order of magnitude faster at 167ms compared to the 2.27s of
Partition-Search.

In Figure 3, we again plot execution time versus the number of reproductions per
source, but this time fix the number of sources at a small value, �{�v�Z� . As compared to
the previous graph with �T�|�5�����5� , the crossover point at which Dudzinski-Walukiewicz

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

Reproductions per source signal

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)
GBFOS
Partition−Search
Dudzinski−Walukiewicz

Figure 4: Execution times for GBFOS, Partition-Search, and Dudzinski-Walukiewicz for
�Y�8�Z�5�?�����5� sources against the number of reproductions per source.

outperforms Partition-Search is �}�4�5���5�5� rather than �}��~��5� . Although Partition-Search
always outperforms GBFOS, the improvement is relatively minimal as the additional log �
factor of GBFOS is insignificant at small � . Dudzinski-Walukiewicz performs at most
a factor of five worse than Partition-Search when the number of reproductions is small,
yet both algorithms use microseconds of CPU time on such problems so the factor of
five is unlikely to be noticeable. At the other extreme, when �i��� million, Dudzinski
and Walukiewicz’s algorithm [6] is three orders of magnitude faster than Partition-Search,
though it seems unlikely that problem instances with one millon reproductions will often
be encountered in practice.

In the final graph, Figure 4, we show results for �Y���Z�5�?�����5� reproductions. With the
constraint of 10 million total reproductions, � was at most 100, so Dudzinski-Walukiewicz
was never faster than Partition-Search. If the number of reproductions for each source was
allowed to grow larger than 100, however, Dudzinski-Walukiewicz would eventually be
more efficient than either of the other two algorithms, as we saw in Figure 2.

6 Discussion

In all of these experiments, Partition-Search outperforms GBFOS in execution time, though
it should be noted that Partition-Search finds an allocation for a single rate whereas GB-
FOS generates the convex hull of all rates. How likely is Dudzinski-Walukiewicz to provide

better performance than GBFOS or Partition-Search in practical situations? It usually out-
performs the linear-time algorithm when the number of reproductions grows from �}�D�Z�5�
and ���8�5���5�5� . For an application like JPEG 2000 configured to use a small number of sub-
bands as sources and the corresponding bitplanes as the available reproductions, Partition-
Search is likely to perform best. On the other hand, a full-search entropy-constrained vector
quantizer with at least 1000 elements in its codebook will almost certainly see performance
gains by using the Dudzinski and Walukiewicz algorithm.

Improvements to the implementations are certainly possible, as is creating a hybrid that
adapts to parameters and calls the algorithm most suited to a given situation. We also point
out that execution time can be reduced by approximating the � o points on a convex hull by
� o o points, � o oU� � o , which will trade off bit allocation accuracy for decreased execution
time.

7 Related Work

Batra [15] used MCKP as a model for bit allocation as part of work on object-based scala-
bility. He treated bit allocation as a special case of MCKP and included extensive coverage
of Dyer’s [7] and Zemel’s [8] j ` ���ne algorithms for solving MCKP when the convex hulls
are not known. He also added inter-dependencies and non-linearities to the formulation to
allow dependent quantization, for example. He included performance results for IBM’s op-
timization solutions software package on a Pentium 233 MHz PC for 37 sources, each with
13 reproductions, and reported execution times of 1.2s for LMCKP and 1.5–30.9s for exact
MCKP branch and bound computations. We focus instead on approximation algorithms
for bit allocation when the convex hulls are known and demonstrate that they can viably
solve problems with millions of quantizers in fractions of a second.

8 Conclusion

We have shown that optimal bit allocation among a set of independent discrete quantizers
with an overall budget constraint is equivalent to MCKP. We use this equivalence to provide
a trivial proof of the NP-hardness of bit allocation and to apply a sub-linear time approx-
imation algorithm to the problem of bit allocation when the convex hulls are known. We
implemented three bit allocation algorithms and evaluated their performance on a variety
of problem sizes.

In the future, we will apply these algorithms to bit allocation for ECVQ, JPEG 2000,
and unequal loss protection. We are also investigating the selection algorithm of Frederick-
son and Johnson [14] and attempting to extend it to solve the weighted selection problem
in less than j ` � log s �ne time. If we succeed, we expect to improve MCKP performance
over Dudzinski and Walukiewicz [6].

Acknowledgments.
I wish to thank Richard Ladner and Eve Riskin for helpful discussions about this work, as
well as Sarah Schwarm and the reviewers for their suggestions.

References

[1] A. V. Trushkin, “Optimal bit allocation algorithm for quantizing a random vector,”
Probl. Inf. Transmission, vol. 17, pp. 156–161, July-Sept. 1981. Translated from
Russian.

[2] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of quantizers,”
IEEE Transactions on Acoustics Speech and Signal Processing, vol. 36, pp. 1445 –
1453, Sept. 1988.

[3] E. A. Riskin, “Optimum bit allocation via the generalized BFOS algorithm,” IEEE
Transactions on Information Theory, vol. 37, pp. 400–402, Mar. 1991.

[4] X. Wu, “Globally optimal bit allocation,” in Proceedings Data Compression Confer-
ence, (Snowbird, Utah), pp. 22–31, Apr. 1993.

[5] K. Ramchandran and M. Vetterli, “Best wavelet packet in a rate-distortion sense,”
IEEE Trans. Image Processing, vol. 3, pp. 533–545, 1994.

[6] K. Dudzinski and S. Walukiewicz, “A fast algorithm for the linear multiple-choice
knapsack problem,” Operations Research Letters, vol. 3, pp. 205–209, 1984.

[7] M. E. Dyer, “An j ` �me algorithm for the multiple-choice knapsack linear program,”
Mathematical Programming, vol. 29, pp. 57–63, May 1984.

[8] E. Zemel, “An j ` �me algorithm for the linear multiple choice knapsack problem and
related problems,” Information Processing Letters, vol. 18, pp. 123–128, 1984.

[9] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementa-
tions. Chichester, NY: J. Wiley and Sons, 1990.

[10] D. Pisinger, Algorithms for Knapsack Problems. Copenhagen, Denmark: University
of Copenhagen, 1995.

[11] D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algorithm?,” SIAM
Journal on Computing, vol. 15, no. 2, pp. 287–299, 1986.

[12] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite
planar set,” Information Processing Letters, vol. 1, pp. 132–133, 1972.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-
bridge, Massachusetts, U.S.A.: M.I.T. Press, 1990.

[14] G. N. Frederickson and D. B. Johnson, “The complexity of selection and ranking in
X + Y and matrices with sorted columns,” Journal of Computer and System Sciences,
vol. 24, pp. 197–208, 1982.

[15] P. Batra, “Modeling and efficient optimization for object-based scalability and some
related problems,” IEEE Transactions on Image Processing, vol. 9, pp. 1677–1692,
Oct. 2000.

