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Abstract—We present the unequal loss protection (ULP) (erasures). The receiver can then take whatever action it deems
framework in which unequal amounts of forward error correction  pest.

are applied to progressive data to provide graceful degradation | hayorks in which packets are discarded at random, there
of image quality as packet losses increase. We develop a simple !

algorithm that can find a good assignment within the uLp S noway to specify the importance of a particylgr packet. Usu-
framework. We use the Set Partitioning in Hierarchical Trees ally, however, the data that we transmit vary in importance. If
coder in this work, but our algorithm can protect any progressive we transmit a portrait of a face, for example, data that let us
compression scheme. In addition, we promote the use of a PMF recognize the person are more important than data that show
of expected channel conditions so that our system can work With o tet)re of a few strands of hair. If the network is unable to
almost any model or estimate of packet losses. We find that when . P .
optimizing for an exponential packet loss model with a mean loss ransmit all of the.data, ther! we would like it to discard th.e. part
rate of 20% and using a total rate of 0.2 bits per pixel on the describing the hair and retain the part that allows recognition of
Lennaimage, good image quality can be obtained even when 40% the face. Such a network strategy needs to quantify the impor-
of transmitted packets are lost. tance of different chunks of data and, as channel conditions de-
Index Terms—Joint source/channel coding, lossy image trans- grade, discard the least important data while retaining the most
mission, lossy packet networks, packet erasure channel, packetimportant data.
loss, priority encoding transmission, Reed-Solomon coding, |n this paper, we describe the unequal loss protection (ULP)
unequal loss protection. framework that assigns unequal amounts of forward error cor-
rection (FEC) to images that are compressed with an unmodified
|. INTRODUCTION progressive algorithm and are transmitted over lossy packet net-
works without using feedback. After presenting the ULP frame-

HE INTERNET is a widely deployed network of Comé;ork, we give a simple algorithm that can find a good FEC as-

puters that allows the exchange of data packets.
traversing the network, a packet is sent from computer
computer until it arrives at its destination. However, when

. aceful degradation of image quality with increasing packet
the number of packets sent exceeds transmission capa% g g€ g y gp

ackets are discarded at random. causing loss of data and rate. We focus on those packet erasure channels without
P . : i ’ 9 14 R@88back whose variable loss rates can be expressed as a proba-
likely decoding failure if the lost data are not retransmltte%i

Each ket b ianed ! b I%?( mass function (PMF). Notable examples are asynchronous
=ach packet can be assighed a unique sequence numbe fa sfer mode (ATM) networks, wireless networks, and UDP-
it is known which packets are received and which are lost.

. . ased transport on the Internet.
the underlying transport protocol does not assign a sequence

number, one or two bytes of the payload can be used to provide
one. When each packet has a unigue sequence number, the
receiver can sort the packets according to their transmission
order and any gaps in the sequence are known to be lost packeta this section, we report previous work on protecting data
from bit errors and packet losses and detail the elements that
will be used in the next section to construct our ULP frame-
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Wavelet method [3]. These two new algorithms are a signifi- SPIHT yields high compression ratios, but images com-
cant breakthrough in lossy image compression in that they giweessed with SPIHT are vulnerable to data loss. Furthermore,
substantially higher compression ratios than prior techniquiescause SPIHT produces an embedded or progressive bit
including JPEG [4], vector quantization [5], and the discretgream, meaning that the later bits in the bit stream refine earlier
wavelet transform [6] combined with quantization. In additiorits, the earlier bits are needed for the later bits to even be
the algorithms allow for progressive transmission [7] (meaningseful. However, SPIHT’s impressive performance is leading
coarse approximations of an image can be reconstructed quialdgearchers to consider transmitting images compressed with
from beginning parts of the bit stream), require no training, arf8PIHT over lossy channels and networks.
are of low computational complexity.

The SPIHT algorithm uses the 9/7-tap biorthogonal filter in ) o )
the discrete wavelet transform [6]. To take advantage of the séff- Prior Work on Transmitting SPIHT over Noisy Channels

similarity among wavelet coefficient magnitudes in different . _
scales, the coefficients are grouped into tree structures aaled_ Snerwood and Zeger [13] protected images compressed with

rotrees The organization of wavelet coefficients into a zerotreg” |11 against noise from the memoryless binary symmetric

is based on relating each coefficient at a given scale (parent)cggnnell/lwth_trhate—cgmpatI[[bIeT[;]unctutred dc%nt\;]qlutmnl? tl (RCPC)
a set of four coefficients with the same orientation at the nex? es [14] with good results. They extended this work to images

finer scale (children). Zerotrees allow the prediction of insignif—ransrnlttecj over the Gilbert-Elliott channel (a fading channel)

) e o n _[15]. In the latter case, they implement a product code of
icance of the coefficients across scales (that is, if the parenkapc and Reed-Solomon codes and find that this outperforms
insignificant with respect to a given threshold, its children a

T . : .
also likely to be insignificant) and represent this efficiently b§/?Ie work in [13] even for the bmary. symmetrlc. channel )
Rogers and Cosman were the first to consider the transmis-

coding the entire tree at once. . ‘i d with SPIHT K

SPIHT groups the waelet coeficient trees into sets Al %, B OICEoae Ol e etation schome
rder fficien he high it plane of the magnitude; , ) ;
orders coefficients by the highest bit plane of the mag tUdcaIIed packetized zerotree wavelet (PZW) compression to

The ordering information is encoded with a set partitionin e : o
) . . : ansmit images compressed with a modified SPIHT over lossy
algorithm. This algorithm is fully reproduced at the decoder. .
acket networks. The algorithm does not use any channel

The SPIHT algorithm transmits the wavelet coefficients in bif_ . . )
oding. They implemented a scheme to fit as many complete

plane order with most significant bit _plane first. For each b avelet trees (i.e., one coefficient from the lowest frequency
plane there are.t\{vo PasSes. In the_ f'r.s.t bass, _calledjdmL wavelet subband along with all its descendants) as possible
inant pass,coefficients which are significant wlth respect tqn_to a packet. The algorithm degrades gracefully in the pres-
the _current threshold are found and coded using the set patiize of packet loss because the packets are independent. If a
tioning method. In the second pass, Bubordinate passhe ,cet is lost, they attempt to reconstruct the lowest frequency
precision of all previously significant coefficients is increaseflyeficients from the missing trees of wavelet coefficients by
by sending the next bit from the binary representation of thgjierpolating from neighboring low frequency coefficients that
values. Such refinement allows for progressive-approximatigaye peen correctly received by the decoder. To simplify their
quantization and produces a fully embedded code, i.e., torithm, they used fewer levels of wavelet decomposition
transmission of the encoded bit stream can be stoppeda@l removed the arithmetic coder from the SPIHT algorithm.
any point and a lower rate image can still be decompressege modification of the SPIHT algorithm caused a decrease of
and reconstructed. Additionally, a target bit rate or targgbhout 1.1 dB in the PSNR for the Lenna image coded at 0.209

distortion can be met exactly. bits per pixel for the case of a channel without losses.
These two schemes were combined into a hybrid scheme in
B. Joint Source/Channel Coding Using SPIHT [17]. The authors consider the case where, in addition to packet

loss, packets can arrive with bit errors in them. They use channel

Joint source/channel coding is an area that has attractedling to correct bit errors and PZW to conceal packet losses. If
a significant amount of research effort. Despite the fact theitey cannot correct all of the bit errors in a packet, they consider
Shannon’s separation theorem [8] states that for a noithe packet to be erased. The hybrid scheme shows resilience to
channel, the source and channel coders can be independgudigket loss, bit errors, and error bursts. It is still based on the
designed and cascaded with the same results as given byadified SPIHT algorithm used in [16], which does not perform
joint source/channel coder, complexity considerations have lasl well as the original SPIHT algorithm.
numerous researchers to develop joint source/channel codingn recent work, Chande and Farvardin presented an unequal
techniques. To date, most of this effort has been for fixed rateror protection algorithm for progressive transmission over bit
codes because they do not suffer from the synchronizatierror channels [18]. They assume that the bit stream can only be
problems that occur with variable rate codes [9]-[11]. (Notabliecoded up to the first uncorrectable error. They suggest max-
exceptions that have considered joint source/channel codingzing the average useful source coding rate as an optimiza-
schemes for variable rate codes include work on reversiltien criterion, because a longer prefix of the bit stream yields
variable length codes that can be decoded in both directidrnigher reconstructed image quality when decoded [18]. They
[12]. However, these codes can still have problems witlse RCPC codes for bit errors. They use a dynamic program-
synchronization.) ming approach to find the optimal code policy for each bit rate.
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Their scheme shows gains over equal error protection of up to Fraction Needed to Recover Message
0.6 dB. 1 0% 40% , 60% 80%
D. Reed-Solomon Codes o

Systematic Reed—Solomon (RS) codes can be used to gen- § M, K

. . wn

erate FEC. RS codes are effective at recovering from erased SL,
symbols when the locations of the erased symbols are known. ﬁI:z M, | F,
When packets either arrive perfectly intact or are completely Qs M, |
discarded, we can consider RS codes that are optimized for era- L 123
sures [19]. These maximum distance separable block codes are e Packets

denoted by a paifV, k), wherelN is the block length and is A | f 2 o

; i~ Ho.1.  InLeicher's application of PET to MPEG [21], he applied 60% priority
t.he number of source symbols. When the code is systematic, %fl (I frames), 80% priority talZ, (P frames), and 95% priority td/5 (B
first k of the N encoded symbols are the source symbols and thignes).
remainingN — & symbols are redundancy. They have the prop-

erty that an( N, k) code can exactly recover thesource sym- _. . . .
bols from any size: subset of théV total symbols. From an in- Girod, Stuhlmaller, Link, and Horn applied unequal amounts

formation theoretic standpoint, that property makes these cod { Reed-Solomon coding to protect packetized scalable H.263

e g :
optimal when exactly: symbols are received. This recovery is\”(?eo' with |mpr_oved results at higher loss rates over equal or
Q error protection [22].

possible by treating the source symbols as the coefficients of . . .
polynomial in a Galois field of siz&® = 256 and evaluating it ﬁ)awset al. [2:.)’] pfese.”t.ed fast lossy Internet image tran_smls-
n (FLIIT) which is a joint source/channel coding algorithm.

Eiltga]l lejg]]ber of additional points, thus creating redundant d%ﬁe PET, it assigns different levels of FEC to different types of
' ' data, but it considers distortion-rate tradeoffs in its assignments.

E. Forward Error Correction for Packet Erasure Channels  They begin with a 5-level discrete wavelet transform, create an
ac?mbedded bit stream by quantizing each subband’s coefficients

. . N o In bit planes, apply entropy coding, and pack the bit stream from
assigns FEC, according to priorities specified by the user, gchF;ubbandpir?t)clJ 64—b)2)é bIockg. To dpo bit allocation, they de-

message fragments (also specified by the user) sent over lot%sl%ine the reduction in distortion due to each block, similar to

packet networks. Each of these fragments is protected agalvr\]/a‘k in [24]. They then compare the greatest decrease in dis-

packet losses by added FEC. It defines priorities as the fraCtit%ri]tion from those blocks with the addition of a block of FEC

of transmitted packets that must be received to decode the Mgsy 1, e already-allocated blocks. They allocate the block of

sage; thus a high priority is represented by a low percenta@gta or block of FEC that decreases the expected distortion the

and the message fragment can be recovered !f relatively f%W)st. They only consider three simple cases of assigning FEC
packets are received by the decoder. The receiver can rec%/er

Priority Encoding Transmission (PET) [2] is an algorithm th

. . 0 a block: no protection, protection that consists of one FEC
the message fragment by interpolation from any subset of P P

; . . : ck shared among a group of blocks, and replication of the
transmitted packets, so long as it receives a fraction of pack Sck They find that, as expected, it is advantageous to apply
at least as large as the priority of the message fragment. T ' ' '

roerty is a direct result of emploving Reed—Solomon code Bre FEC to the coarse/low-frequency wavelet scales and to the
property | : u ploying — %\ost significant bit planes of the quantization.

ﬁx'ef:j tgg;g aggr:zgcﬁz‘;tgﬁiag%frlagtrr‘]":rf‘ltg 22;'312‘2 Fhe FLIIT algorithm is one of the first pieces of work to ex-

M, and its FECE. consist of the fi.rsTL b)./te,s of each packet licitly consider distortion-rate tradeoffs in ma_lk_lng_FI_EC assign-

thé second fra rrllerM and its FECFlconsist of btes from. MENtS for lossy packet networks. However, it is limited by the
9 2 2 y coarse assignment of only three levels of protection, and the re-

(L1+1) tob(LtQ) offeacr;] packkett, irllzm_??’ da?dF 3 contsrllst ofut]he fliance on the compression algorithm they have selected (for ex-
remaining bytes ot each packet. etermines he vale o ample, SPIHT can yield a PSNR that is over 1 dB higher than

for each fragment and the total number of pac_liétsmaklng heir algorithm). In later work [25], the FLIIT algorithm was ex-
the assumption that the number of fragments is much small r

than the number of bytes in each packet, and constrained by
user-specified priorities.

The PET algorithm does not specify how to choose the
priorities to assign to the various message fragments: this
assignment is left to the user. Leicher [21] applied PET to While the algorithms in [15]-[17], [23] yield good results
video compressed with MPEG and transmitted over packet Idss memoryless and fading channels and for lossy packet net-
channels. He used a simple three-class system in which works, there are additional ways to transmit compressed images
was the intraframe () frames and had priority 6Q%; was the over lossy networks such that image quality gracefully degrades
forward-only predicted (P) frames and had priority 80%, andith increasing packet loss. Specifically, we will protectimages
M3 was the forward—backward predicted (B) frames and hadinsmitted over lossy channels with unequal amounts of FEC
priority 95%. Thus, he can recover the | frames from 60% afi a manner similar to the PET scheme, but we will consider the
the packets, the | and P frames from 80% of the packets, andedfect of each data byte on image quality when assigning pro-
the data from 95% of the packets. This is diagrammed in Fig.tection.

nded to use more powerful Reed—Solomon-like codes, but it
iff relies on their compression algorithm.

Il. THE UNEQUAL LOSSPROTECTION FRAMEWORK
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1] 2] B[F] [F] [F 1] [2][3] 2 [F]|[F
4| |5]|[6]|7/I[F]|F =2(4||5]| (6] ? |F||F
@
238 [9] 10| [1A[|[F[ ¥ E3(8||9] 10| ? [F|[F
2412»13»14»15_»16—- F = 4[12[-{13[-14}- ? ~[16[+ F
§517 18| (19| |20} [21|{| F $517| |18 |19 ? |21} |F
@ 6|22 (23| |24| (25| |126]|| F “622| (23] 24] ? [26] (F
7127] 28| 129} (30| (31| |32 7127) 28] 29] ? [31] |32
1 2 3 4 5 6 1 2 3 4 5 6
Packet number Packet number
Fig. 2. Each of the rows is a stream and each of the columns is a packet. A (@)
stream contains 1 byte from each packet. The numbers 1-32 are data, and the
symbol F is FEC. L 1 2 3 v
In our approach to creating a framework derived from PET to 5 _
assign unequal amounts of FEC to progressive data, we remove 5 2| 4 S 6 7 §
PET's restriction that the number of message fragments be much -E 38 91 110 |11l
less than the number of bytes in each packet. Instead, we use a =
. 412131415161+
number of message fragments equal to the number of available ; 121-13[14}-151-|16
bytes in each packet and have our algorithm dynamically choose g5 17( (18| |19] |20| |21
the length and content of each message fragment. We add FEC » 6|22 (23] 124! 125] |26 '
to each message fragment to protect against packet loss such — ‘
that the fragment and the FEC fornsteam.The message is 7127{ 128] [29] | X| [ X] | X
divided into L streams such that each stream has one byte of 1 2 3 4 5 6
each ofV packets. In Fig. 2, each of tHe = 7rows is a stream Packet number
and each of thé& = 6 columns is a packet. For a given stream (b)
i,fori = 1,2, ..., L, containing both data bytes and FEC

bytes, as long as the number of lost packets is less than or equgiqi& Demonstration of how much data can be recovered when one of six

. ets is lost. Here, stream 1 is unaffected by the loss, streams 2—6 use FEC to
th_e number of FEC byt.es, the entire stream can be decoded over from the loss, and in stream 7, only the bytes up to the lost packet are
Fig. 2 shows one possible way to send a message of 32 bytesseful to the decoder.

data (numbers 1-32) and ten bytes of FEC (F). Notice that in the

figure, more bytes of FEC are applied to the earlier parts of tlaesequence of data bytes to be transmitted. For example, this
message and fewer are used for the later parts of the message EQf4 pe a still image compressed with SPIHT to 0.5 bits per
SPIHT’s embedded bit stream, the earlier parts of the mess I. If, instead of sending/, we send a prefix al/ and some
should have the highest priority because they are mostimportgﬁt(:' W’e can still maintain t’he same overall bit rate. Wertet

tot':he o:\%/eLaIIqu?r:ltyofthe rﬁproducuon.k t out of six is lost %%ual the number of data bytes assigned to strieamad letf; —
_ F9. 5 shows the case where one packel out of SIX IS 10st, agd_ , ~equal the number of FEC bytes assigned to stréam
five are received correctly. In this case, the first six streams cgvré

be recovered since they contain five or fewer data bytes. T,
last stream cannot be decoded since it contains six bytes of
and no FEC. We point out that bytes 27-29 from the sevent
stream are useful since they were received correctly but bytes 31 T=( i, for ooy 1),
and 32 are not useful without byte 30. Similarly, if two packets

are lost, bytes 1-11 are guaranteed to be recovered and byigs 5 givenf, we divide M into fragmentsM;(F) and de-
12-15 may or may not be recovered. In messages of practigah M;(F) to be the sequence of data bytes in ttiestream.
length, however, those few extra bytes have only a small effeg{ ¢ is, M; () includes the bytes of messagé from position
on image quality. Analogous to progressive transmission [7%?—1 mi + 1 to positionz? mii = 2.3 ... L. with
even if severe packet loss occurred, we could recover a Iovyﬁ,rl’(:?l) C(J)mposed ofn, byteézolf stieam 1. We denote a prefix
fidelity version of the image from the earlier streams that a M containing the firsy fragments for redundancy vectgr
decoded correctly. Each additional stream that is successf ’

decoded improves the quality of the received message, as long

as all previous streams are correctly decoded. M@, F) = My(PMy(F) ... M;(F)
)= M.

define the redundancy assignment,/adimensional FEC
&ctor whose entries are the length of FEC assigned to each
F@am, as

A. Formalizing the Framework We define thencremental PSNRf stream:

In this section, we introduce notation to formalize the ULP B _ _
framework. Assume we have a messdge which is simply g:(f) =PSNRM(, f)] — PSNRM( — 1, f)].
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7] 01 best[«] :== (N, N,...,N)
- - 02 Until best[] = last[] Do:
1] ; 2 | 03 last[*] := best[+]
= | = 04  Foreach stream s from 1 to L:
= 1 I- : Fl‘-": J 05 Foreach search_value from —@Q to +Q:
= e = | a 06 temp[*] := last[*]
E 3| |I'I'I.lgl. data = | 07 temp|s] 1= temp(s] + search_value
e ® + 08 If temp[s] < 0 or temp[s] > N then continue to next search_value
E 4 I . ] 09 If searchvalue > 0 then for all ¢ > s
: [ _+ | 10 Do templi] := maz(templs], templz])
11 Else for all 4 < s
1 [ * 12 Do templi] := min(temp[s], temp[i])
) 13 End if
Do goposinga v didy  dmboaen we oM 14 Calculate expected PSNR for temp[«] using Equation 1.
15 If PSNR(temp[*]} > PSNR(best[*]) then
H:rl.lﬂ H umber 16 best[x] := templx]
17 End if
Fig.4. Ateach iteration of the optimization algorith@ bytes of data can be |18 End ‘f("rea‘:h
added or subtracted to any of thestreams. ;g . dEnd sfile“h
nd unti

The quantityg;( f) is the amount by which the PSNR increases ' e

when the receiver decodes fragméngiven that all fragments Flg. 5. Pseudocode of assignment aIgorltIngs the number of packets, and
. . — . L is the length of each packet. The variablest, last, andtemp are vectors

prior to¢ have already been decoded. Weg€Y) to be the dif-  that store redundancy assignmeritss the search distance aserch value

ference in PSNR between the case in whigh( f) is received is an iteration index over that distance.
and the case in which no information is received (a simple grav

field). 34 . . . . . . ‘ . —
Because the data are progressive, we requirefihat f;11; 206 - 3232.“ fé;gﬁoigoctt?ggon 1

i=1,2,..., L —1;thatis, the FEC assigned to the stream P o Eﬁg’:gt"ezcetgfgmﬁres

is nonincreasing with. With this requirement, ifv/;(f) canbe | 30~ ~"T 7T T T TR T TOT

decoded, thed,(f), Mx(f), ..., M;_1(f) can also be de- | [

coded. There is no advantage to having more redundancy o

streami + 1 than in stream because the loss of more th@n %26 : .

packets would render both streams undecodable. So4f
To determine the FEC vectof, we use an estimate of the 2 |

channel loss profile that a message is likely to encounter. T|*

estimate is given by a PMF,,; n =0, 1, ..., N, such thap,, 20

is the probability that. packets are lost. To simplify later cal-| 4|

culations, we determine the probability thabr fewer packets

are lost, and thus the cumulative distribution function(fs) = 1er

Sk o Pnik =0,1,..., N. The quantityc(f;) is the proba- | +1a| —

bility that receiver can decode stream 0 o1 o2 03 04 05 06 07 o8 09 1
We can now calculate the expected PSNR of the receiv Fraction of Packets Lost

message as a function #fby summing over thé. streams _
Fig. 6. Effect of packet loss on PSNR for ULP, ELP, Rogers and Cosman’s

packetized zerotree wavelets [16], and unprotected SPIHT. The two loss
- - rotection results are from an exponential packet loss model with a mean loss
G(f) = Z C(fz)gz(f) 1) Pate of 20%. P P
=1
In designing an algorithm to assign FEC, we seek fhimat Internet is an open and active research topic in the networking
maximizes((f) subject to a packet loss estimate Note that community [27], [28], although we note that an estimator for
¢:(f) could be image quality measures other than PSNR suchﬂa_g Internet s likely to be quite dlﬁerent from an estimator for a
the mean squared error, useful source coding rate, or percepWiggless channel. By requiring the estimator to produce a PMF,

criteria, all of which fit within this framework. we maintain the relevance of the framework to a variety of ap-
plications and allow new developments in network channel es-
B. Channel Estimation timation to be seamlessly incorporated into our system.

In keeping with our modular design philosophy, we assume
the existence of aastimatorthat outputs a PMF indicating the
likelihood that a particular number of packets is lost, given the The previous section presented a framework that can be used
total number of packets to be transmitted. This estimator coutu assign FEC to the compressed image data. In this section,
be almost any model of expected packet loss rates: a PMF @@ describe an algorithm to find a good FEC assignment
realize uniform, binomial, Zipf, Poisson, exponential, and otheector. Finding the globally optimal assignment of FEC data
distributions, as well as state-based systems such as Gilbertt&leach of the streams within the ULP framework appears to
liott channels. Furthermore, characterizing networks such as thee computationally prohibitive for a useful amount of data.

IV. AN ALGORITHM FOR SOLVING THE ULP PROBLEM
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(b)

(© (d)

Fig. 7. Image quality at 0.2 bits per pixel total rate for Unequal Loss Protection of Lenna over a channel that has an exponential loss profile vaftf2@%mean
(a) 30% of packets lost. (b) 40% of packets lost. (c) 50% of packets lost. (d) 60% of packets lost.

We therefore developed a local search hill-climbing algorithimytes that can be added or subtracted to a stream in one iteration)
that makes limited assumptions about the data, but is compuadL is the number of streams. We determiiigf) after adding
tionally tractable. As mentioned in Section Ill-A, we constrailor subtracting 1 tay bytes of FEC data to each stream (see
fi = fi+1. Additionally, we assume that a single byte missingig. 4), while satisfying our constraigt > f;41. We choose
from the progressive bit stream causes all later bytes to becotie f corresponding to the highe&t(f), update the allocation

useless. of FEC data to all affected streams, and repeat the search until
We initialize each stream to contain only data bytes, such thaine of the cases examined improves the expected PSNR. This
m; = Nandf, = 0;¢ = 1,2, ..., L. In each iteration, our process is detailed more fully in pseudocode (see Fig. 5). Our

algorithm examines a number of possible assignments equahtgorithm finds a local maximum that we believe is quite close
2Q L, where() is the search distance (maximum number of FE® the global maximum and, in some cases, may be identical.
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| ——

The search distana@ is a parameter of the algorithm that is
chosen ahead of time. There is clearly a tradeoff: the latyer
is, the more likely the algorithm will find a global optimum, but
the algorithm will require more time to run. When the PMF is
well behaved, such as a simple unimodal function, a si@all
seems to yield excellent results.

Note that for every byte of FEC data that we add to a stream,
one byte of data needs to be removed. When changing the FEC
assignment, we start at the first stream affected by the new allo-
cation, move its last data byte to the next stream, move the last 35
data byte of this stream to the following stream, and so on. This 49
causes a cascade of data bytes to move down the streams until s
the last data byte from streamis discarded. This part of the - 3
algorithm uses our assumption that the compressed sequence 0 o1 02 03 °sata%,icﬁ3,f 07 08 08 1
is progressive, because the data byte that we discard is among
the least important n the embedided bit stream. The algoritff P ecionioreach tesr (e e N et FEc acton
results in a set of different strength Reed—Solomon codes. Tgy@am 47 is the last stream (least important data). P '
size of each code would need to be sent to the decoder as side
information and how this would be implemented dependsonthe 32 —————r——7—7T—7—T 7
system being used. po| [ Uneaual Loss Protection]

N N = =
o o o O O

Stream Number
8

V. RESULTS

The algorithm developed in the previous section is applied 2

to two test images. The first test image is the standard “Lenna” 2241 P P e
image and the second is a magnetic resonance image of asagittal ,,| = . o

brain slice. e
20
A. Lenna 18F
For these experiments, we used the standard5322 gray- ,6 .......
scale Lennaimage compressed with SPIHT. We chose a total bit R S
rate of 0.2 bits per pixel for the combination of data and FEC ~ ™ 10 20 30 4 50 60 70 80 80 100 110 120 130

bytes. Because ATM packets have a payload length of 48 bytes Number of Packets Received

and 1 byte is required for a sequence number, we place 47 bygSo. The ULP system is progressive in the number of packets received
of data in each packet and send 137 packets, giving a total péynna image).
load size of 6576 bytes, of which 6439 are data. Including the
seqguence number, the bit rate is 0.201 bits per pixel. Excludipiglds a PSNR that is 0.66 dB higher than ELP. This is because
it, the bit rate is 0.197 bits per pixel. Convergence of the atore bytes are used for data and fewer for FEC. ELP surpasses
gorithm is typically reached in about 27 iterations and requiréi_P when loss rates are 33% to 51%, but those occur with
0.5 son an Intel Pentium Il 300 MHz workstation. only 12.5% probability. In addition, ULP degrades gracefully

For this example, we use a channel loss model that is an expdrereas ELP has a sharp transition at loss rates near 51%. ULP
nential PMF with a mean loss rate of 20%. We justify the expa@utperforms ELP a total of 85.5% of the time for this example.
nential shape by noting that packet loss rates are usually sma8, expected, both of these cases substantially outperform not
but sometimes spike to larger values. Although a 20% mean lagsng any protection on the data, except when the loss rate is
rate may seem high for current ATM networks, loss rates havery low.
been increasing over time [29]-[31], and such high loss ratesAt those low loss rates, e.g., below 1%-2%, unprotected
commonly occur with wireless networks and on the Internet 8PIHT will often survive with a significant prefix of the
peak times. We use this PMF to demonstrate that ULP is robtistnsmitted data remaining intact and the more-robust PZW
even in extreme situations. coder [16] will perform slightly better. On the other hand,

We maximize the expected PSNR for two cases: UlLfhe performance of unprotected SPIHT and PZW degrades
and equal loss protection (ELP), in which the algorithm isapidly as losses increase, while the addition of FEC allows
constrained to assign FEC equally among all of the streanpsotected data to survive at larger loss rates. We also note
For ULP, our assignment algorithm resulted in an allocatichat the protected data are affected only by the number of lost
with an expected PSNR of 29.42 dB. For ELP, the result waackets, but the reconstruction quality of unprotected SPIHT,
an allocation with an expected PSNR of 28.94 dB, or 0.48 dihd to a lesser extent PZW, depends upon which packets are
lower than the ULP assignment result. lost. (See [26] for more discussion of this subject.)

As shown in Fig. 6, under good channel conditions (packetWe display results of our ULP algorithm in Fig. 7. It shows
loss rates of up to 32%, which occur 80% of the time) ULEhe graceful degradation of the image transmitted over a lossy
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Fig. 11. Comparison of magnetic resonance image PSNR versus fraction of
packets lost for ULP, ELP, and unprotected SPIHT. The channel loss model is
an exponential with a mean of 10%.

decreases with increasing stream number, as required by our
algorithm.

Finally, we point out that our system does provide progres-
sive transmission, albeit with a delay. Once a number of packets
equal to the number of data bytes in stream 1 is received, we
can begin to decode the image. In Fig. 9, we see that when 33
packets of the ULP-protected Lenna image have arrived, stream
1 can be decoded. Then as additional packets are received, the
additional decoded bytes are used to update the image. Further-
more, the image quality does not depend on which packets are
received or on their order of arrival [26].

B. Magnetic Resonance Image

We next apply the ULP algorithm to a 256 256 magnetic
resonance image of a brain compressed with SPIHT. The orig-
inalimage is shown in Fig. 10(a) and a compressed versionat 1.0
bits per pixel is shown in Fig. 10(b). In this example, the image
was transmitted in 174 47-byte payloads over a channel with an
(&) exponential mean loss rate of 10%. We chose this lower mean
loss rate to demonstrate that the ULP assignment algorithm is

Fig. 10. The 256x 256 magnetic resonance image. (a) The original. (b Iso effective fpr less e.Xtreme network .Con.dltlons' The total bit
Compressed at 1.0 bit per pixel with SPIHT. ate was 1.0 bits per pixel for the combination of data and FEC
bytes. Convergence of the algorithm was typically reached in

) about 46 iterations and required 0.08 s of CPU time on an Intel
packet network with loss rates of 30%, 40%, 50%, and 60%entium 11 300 MHz workstation.

Notice that the image quality remains high at a packet loss ratg, Fig. 11, we show the results of using our algorithm for
of 40% and the image is still recognizable at a loss rate of 5038t yLP and ELP. Under better channel conditions (packet loss
(and even at 60% by researchers in the image compression Cpfag of up to 24%), ULP yields a PSNR of 36.02 dB, which
munity). is 1.08 dB higher than the 34.94 dB result of ELP. As before,
We show how ULP assigns data and FEC to the data streddis? degrades gracefully, whereas ELP would give very poor
in Fig. 8. Stream 1 is the first stream (most important data fronmage quality if the experienced loss rate were above 33%. ULP
the SPIHT algorithm) and it has an assignment of 24% data amatperforms ELP 94% of the time in this example. Fig. 12 shows
76% FEC. Stream 47 is the last stream (least important datia® graceful degradation of the image protected with ULP and
with 70% data and only 30% FEC. The 47 streams representtBansmitted over a lossy packet network with loss rates of 10%,
different RS code strengths. As expected, the amount of FRG%, 30%, and 40%. Notice that the image quality remains high
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(© (d)

Fig. 12. Image quality at 1.0 bit per pixel total rate for Unequal Loss Protection of a magnetic resonance image over a channel that has an espanefiigal lo
with a mean of 10%. (a) 10% of packets lost. (b) 20% of packets lost. (c) 30% of packets lost. (d) 40% of packets lost.

at a 30% loss rate and the image is still clearly recognizable @smpression scheme, any network condition estimator that pro-
a sagittal brain slice at the 40% loss rate. duces a PMF, and other ULP assignment algorithms besides the
hill-climbing algorithm presented here. As better progressive
compression algorithms than SPIHT are discovered, they can
VI. CONCLUSION be easily incorporated into the ULP framework. We are cur-
rently developing an assignment algorithm that is optimal for
We have presented the Unequal Loss Protection framewarkonvex hull approximation of the source data. We also expect
and developed a simple algorithm that assigns FEC to provibeextend this work to the transmission of video sequences. Fi-
graceful degradation of image quality in the presence of packetlly, we have used our ULP system to solve the generalized
loss. Our framework is modular and can input any progressimultiple description problem [26]. Demo programs and data
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files are available from http://isdl.ee.washington.edu/compreg22]
sion/amohr/ulp/.
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