ON VECTOR QUANTIZATION FOR FAST FACET
EDGE DETECTION *

M. Y. Jaisimha Jill R. Goldschneider

Alexander E. Mohr Eve A. Riskin

Robert M. Haralick
Department of Electrical Engineering, FT-10, University of Washington, Seattle, WA 98195

Abstract

We present an approach for performing edge de-
tection which builds on our prior work in fast facet
edge detection using tree-structured vector quantiza-
tion (TSVQ). We first extend the approach by using
larger image vectors to reduce computational complex-
ity by performing edge detection on multiple pixels at
once. We then reduce the computational complexity of
the edge detector without sacrificing performance by
pruning the TSVQ with an edge detection-based crite-
rion. We present results of edge detector performance
on a sequence of images obtained from a mobile robot.

1. INTRODUCTION

This paper presents extensions to our work using
TSVQ [2] to speed up the process of facet edge detec-
tion [4, 5]. Because image VQ and facet edge detection
operate on small block-based neighborhoods, VQ can
be used to perform edge detection. The image is en-
coded with a VQ for which the edge/no-edge decision
has already been made for each codeword. Thus edge
detection becomes a simple lookup of this information.
The algorithm behaves as a “trainable edge detector”
which has the advantage of having lower computational
complexity than the conventional facet edge detector.

To improve the computational speed of the edge de-
tector, we first explore the use of larger image vectors
to perform edge detection on more than one pixel per
codeword. We briefly describe our previous work and
the extension in Section 2. When edge detection is per-
formed on the centroid associated with each node of the
tree, we find that often, the leaves of an entire subtree
of the TSVQ has nodes which are all labeled as edge or
no-edge nodes. Thus we can prune the TSVQ based on
this edge detection criterion without affecting the edge
detection performance. We describe the approach to
pruning TSVQ-based edge detectors in Section 3. We
conclude in Section 4.

*This work was supported by an NSF Young Investigator
Award, NSF Research Experiences for Undergraduates Supple-
ment MIP-9110508-SI, and NASA Graduate Student Fellowship
in Global Change Research 4112-GC93-0191.

2. FAST FACET EDGE DETECTION

The second directional derivative edge detector [4]
models a digital image as being derived by sampling a
continuous underlying graytone intensity surface. The
surface can be represented by a bivariate polynomial.
referred to as a facet. Each pixel is labeled as an edge
pixel if the second directional derivative of the facet in
the direction of the gradient has a negatively sloped
zero crossing within a threshold radius of the center of
the pixel and if the edge contrast exceeds a threshold
value. The facet polynomial coefficients for a cubic
facet are obtained by performing a least squares fit to
a b x 5 neighborhood of pixels centered around a pixel
with a suitable set of bivariate basis polynomials.

The overall approach presented in [5] which we ex-
tend in this paper is as follows: 1) VQ Codebook De-
sign: The training set is formed from all overlapping
5 x 5 blocks of the first image of a motion sequence. It
is then used to design an unbalanced TSVQ. 2) Facet
Edge Detection on the VQ Codebook: For each vec-
tor in the codebook, the facet parameters are com-
puted. Second directional derivative edge detection
is then performed on each of the codewords and the
edge/no-edge decision for the center pixel is stored with
the codeword. 3) Fast Facet Edge Detection: Later im-
ages in the sequence are encoded using the VQ and the
edge/no-edge decision is output for each center pixel.

For an average depth R TSVQ with vector dimension
M x M, edge detection on one pixel costs R (M x M)-
dimensional hyperplane tests. A rough estimate for
this cost is RM? multiplications per pixel.

We first reduce the complexity of this algorithm by
using vectors of size (M + 1) x (M +1) to perform edge
detection on the four center pixels of the larger vector.
In this case, the complexity is now roughly w
multiplications per pixel and for our case of M = 5,
the complexity reduces from 25 R to 9 R multiplications
per pixel. We see that increasing the vector size im-
proves the edge detector in Section 2. Figure 1 is the
original input image which is Frame 2 of a mobile robot
motion sequence. The output of a TSVQ-based edge

detector using 6 X 6 vectors at a rate of 6.8 bits per
vector appears in Figure 2; this rate TSVQ includes all
perceptually meaningful edges while rejecting signifi-
cant amounts of texture edges.

To provide a quantitative measure of edge detector
performance, we compare the output of the edge de-
tector against a “ground-truth” edge image, generated
by a human operator, which contains the perceptually
meaningful edges of the image (see Figure 3). The edge
detector makes two kinds of errors - the first type, mis-
detection errors, occurs when a pixel that is labeled
as an edge in the ground-truth image is labeled as no-
edge; the second type, false alarm errors, occurs when
a pixel that is labeled as no-edge in the ground-truth
image is labeled as an edge.

We modify the definition of false alarm errors to con-
sist of edge pixels that are outside a two pixel radial
tolerance of the ground-truth edge. To provide a quan-
titative measure of edge detector performance, we com-
pute the probability of false alarms (Pf,) and misde-
tections (Ppq) in the output of the edge detector. An
ideal edge detector would have P, = Pp,q = 0.0.

In Table 1 we present the false alarm and misde-
tection probabilities for four frames of the sequence of
images. The results are for the TSVQ-based edge de-
tector with 6 x 6 vectors for a rate of 6.8 bits per vector
of Figure 2; the facet edge detector; and the VQ-based
edge detector (from [5]) with 5 x 5 vectors for a rate of
6 bits per vector. The edge contrast thresholds used in
all three edge detectors are identical.

Comparing the VQ-based edge detectors to the facet
edge detector, we see that the VQ-based edge detectors
have substantially lower false alarm rates but higher
misdetect rates. This would not adversely affect a scene
interpretation system that fits lines and curves to the
resulting edge data because such systems are more sen-
sitive to high false alarm rates than to high misdetec-
tion rates.

In addition we find that the VQ-based edge detector
with 5 x5 vectors has a higher false alarm and misdetect
rate than the one with 6 x 6 vectors. Upon visual ex-
amination of the edge detector output, we see that the
6 x 6 VQ-based edge detector detects low probability
high contrast edges fairly reliably while rejecting higher
probability low contrast edges. Also, as we mentioned
earlier, the computational complexity of the 6 x 6 VQ-
based facet edge detector is substantially lower than
that of the original facet edge detector and the 5 x 5
VQ-based edge detector.

In Table 2 we present the false alarm and misde-
tection probabilities for the 6 x 6 TSVQ for Frame 2
with rates of four to nine bits per vector. Note that
increasing the rate increases false alarms while decreas-

ing misdetections. Choosing the TSV(Q design rate is
a tradeoff of these two quantities.

3. PRUNING OF TSVQ-BASED FACET
EDGE DETECTORS

In our second extension, we prune the TSVQ-based
edge detector using an edge detection criterion. We
examine the TSVQ and if two siblings have the same
edge/no-edge assignments, we prune them and assign
the edge decisions to their parent node. This reduces
the complexity and storage requirements by lowering
the average rate of the TSVQ used to encode the im-
ages, but clearly the performance of the edge detector
does not change. Usually, pruning is a tradeoff of de-
creasing the average bit rate and increasing the average
distortion [3], but here we decrease the edge detector
complexity without affecting its performance at all!

It is possible to predict the expected number of nodes
pruned from a tree if we assume that we know the struc-
ture of the tree (i.e. the number of nodes at each level
of the tree), and the probability that an edge assign-
ment is an edge/no-edge. For example, assume that
we have a balanced tree with N levels where level 0 is
the root node and level N — 1 is the leaf nodes. Also
assume that any edge assignment at a leaf node is inde-
pendent of other edge assignments and has the proba-
bility of being an edge or not an edge of P(e) and P(é)
respectively, where P(e) + P(€) = 1. Let T[N] be the
expected number of nodes pruned from an N level tree.
We can write
P (PE)T)m
where T[1] = 0 and m is the number of edge decisions
per node (i.e. m = 1 for 5x5 vectors and m = 4 for 6 x6
vectors). In other words, the number of nodes pruned
from a balanced tree with N levels is the number of
nodes pruned from two balanced trees with N — 1 lev-
els(es ee e e 1 e e e

T[N] = 2T[N — 1] + 2((P(e))

